A Semi-Dynamic Construction of Higher Order Vorono Diagrams and its Randomized Analysis Une construction dynamique des diagrammes de Vorono

نویسندگان

  • Olivier Devillers
  • Monique Teillaud
چکیده

The k-Delaunay tree extends the Delaunay tree introduced in [1,2]. It is a hierarchical data structure that allows the semi-dynamic construction of the higher order Vorono diagrams of a nite set of n points in any dimension. In this paper, we prove that a randomized construction of the k-Delaunay tree, and thus, of all the order k Vorono diagrams, can be done in O(n logn + k 3 n) expected time and O(k 2 n) expected storage in the plane, which is asymptotically optimal for xed k. Our algorithm extends to d dimensional space with expected time complexity O k d d+1 2 e +1 n b d+1 2 c and space complexity O k d d+1 2 e n b d+1 2 c . The algorithm is simple and experimental results are given.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gelfand Models for Diagram Algebras : extended abstract

A Gelfand model for a semisimple algebra A over C is a complex linear representation that contains each irreducible representation of A with multiplicity exactly one. We give a method of constructing these models that works uniformly for a large class of combinatorial diagram algebras including: the partition, Brauer, rook monoid, rook-Brauer, Temperley-Lieb, Motzkin, and planar rook monoid alg...

متن کامل

Theorem Proving Support for View Consistency Checking

A formal, mechanically checked specification of the consistency constraints between two views of object-oriented systems are presented. The views, described in the BON modelling language, capture the static architecture of systems via contract-annotated class diagrams, and the dynamic view provided by collaboration diagrams. The constraints are specified as an extension of the BON metamodel, an...

متن کامل

Modular Specifications: Constructions With Finite Colimits, Diagrams, Isomorphisms

Modular speciications: constructions with nite colimits, diagrams, isomorphisms Catherine ORIAT R esum e : La composition de sp eciications modulaires peut ^ etre mod elis ee, dans le forma-lisme des cat egories, par des colimites de diagrammes. Les sommes amalgam ees permettent en particulier de d ecrire l'assemblage de deux sp eciications qui ont une partie commune. Ce travail etend cette id ...

متن کامل

Finite Quantum Groups over Abelian Groups of Prime Exponent

– We classify pointed finite-dimensional complex Hopf algebras whose group of group-like elements is abelian of prime exponent p, p > 17. The Hopf algebras we find are members of a general family of pointed Hopf algebras we construct from Dynkin diagrams. As special cases of our construction we obtain all the Frobenius–Lusztig kernels of semisimple Lie algebras and their parabolic subalgebras. ...

متن کامل

Applications of Random Sampling to On-line Algorithms in Computational Geometry

This paper presents a general framework for the design and randomized analysis of geometric algorithms. These algorithms are on-line and the framework provides general bounds for their expected space and time complexities when averaging over all permutations of the input data. The method is general and can be applied to various geometric problems. The power of the technique is illustrated by ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993